Environmental Product Declaration

Sloan Valve Company | Basys[®] EFX Sensor Faucets

Declaration Owner Sloan Valve Company 10500 Seymour Avenue Franklin Park, IL 60131 customer.service@sloan.com | 800.982.5839 https://www.sloan.com

Product

Sloan Basys[®] EFX Sensor Faucets

Functional Unit

1 packaged, installed unit with a Reference Service Life of 10 years in a building with an Estimated Service Life of 75 years

EPD Number and Period of Validity

SCS-EPD-09754 EPD Valid January 10, 2024 through January 9, 2029

Product Category Rule

UL. PCR Guidance for Building-Related Products and Services
Part A: Life Cycle Assessment Calculation Rules and Report
Requirements. Version 3.2. December 2018.
UL PCR Guidance for Building-Related Products and Services
Part B: Kitchen and Bath Fixture Fittings and Accessory Products
EPD Requirements. Version 1.0. October 2020.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration owner:	Sloan Valve Company
Address:	10500 Seymour Avenue, Franklin Park, IL 60131
Declaration Number:	SCS-EPD-09754
Declaration Validity Period:	EPD Valid January 10, 2024 through January 9, 2029
Program Operator:	SCS Global Services
Declaration URL Link:	https://www.scsglobalservices.com/certified-green-products-guide
LCA Practitioner:	Beth Cassese, SCS Global Services
LCA Software and LCI database:	OpenLCA 2.0.3 software and the Ecoinvent v3.9.1 database
Product's Intended Application:	Fitting designed to discharge a specific volume of water into a lavatory.
Product RSL:	10 Years (ESL 75 Years)
Markets of Applicability:	North America
EPD Type:	Product-Specific
EPD Scope:	Cradle-to-Grave
LCIA Method and Version:	CML-IA Baseline and TRACI 2.1
Independent critical review of the LCA and	□ internal
data, according to ISO 14044 and ISO 14071	
LCA Reviewer:	Thomas Gloria, PhD., Industrial Ecology Consultants UL PCR Guidance for Building-Related Products and Services Part B: Kitchen and
Product Category Rule:	Bath Fixture Fittings and Accessory Products EPD Requirements. Version 1.0. October 2020.
PCR Review conducted by:	Jim Mellentine, Angela Fisher, Christopher Marozzi
Independent verification of the declaration and data, according to ISO 14025 and the PCR	□ internal
EPD Verifier:	Thomas Gloria, PhD., Industrial Ecology Consultants
	1. ABOUT Sloan
Declaration Contents:	2. PRODUCT
l	8. REFERENCES

Disclaimers: This EPD conforms to ISO 14025, 14040, 14044, and ISO 21930.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

In accordance with ISO 21930:2017, EPDs are comparable only if they comply with the core PCR, use the same sub-category PCR where applicable, include all relevant information modules and are based on equivalent scenarios with respect to the context of construction works.

1. ABOUT Sloan

Sloan is the world's leading manufacturer of commercial plumbing systems and has been in operation since 1906. Headquartered in Franklin Park, Illinois, USA, the company is at the forefront of the green building movement and provides smart, sustainable restroom solutions by manufacturing water-efficient products such as flushometers, electronic faucets, sink systems, soap dispensing systems, and vitreous china fixtures for commercial, industrial, and institutional markets worldwide.

The Sloan Basys[®] EFX sensor faucets are manufactured in Rebstein, Switzerland.

2. PRODUCT

2.1 Product Description

Sloan faucet products belong to the Commercial Plumbing Fixtures specification code, CSI code 22 42 39 and the UNSPSC code 30181700.

A faucet is a fitting designed for discharge of a specific volume of water into a lavatory that is turned on mechanically or electronically, and intended to be installed in non-residential bathrooms that are exposed to walk-in traffic. The volume or cycle duration can be fixed or adjustable. Lavatory faucets are used primarily for hand washing or simple rinsing. Basys[®] faucets feature a cast brass spout, quick connect fittings, infrared sensors and integrated water shut-off. The product systems under study include the following products.

Table 1. Sloan Basys EFX Sensor Faucet models represented in this EPD.
--

Model	Flow Rates	Power Source					
EFX 200	0.5 gpm/1.9 Lpm 1.5 gpm/5.7 Lpm	Hardwired					
EFX 250	0.5 gpm/1.9 Lpm 1.5 gpm/5.7 Lpm	Battery					
EFX 275	0.5 gpm/1.9 Lpm 1.5 gpm/5.7 Lpm	Solar					
EFX 277	0.5 gpm/1.9 Lpm 1.5 gpm/5.7 Lpm	Solar					
EFX 280	0.5 gpm/1.9 Lpm 1.5 gpm/5.7 Lpm	Turbine					

*gpm=gallons per minute | Lpm=Liters per minute

2.2 Application

Sloan sensor faucets are designed for use with lavatories as the dispensing unit for the water supplied. The faucets are primarily installed in commercial, industrial, and institutional markets worldwide.

2.3 Representative Product

All of the Basys[®] EFX sensor faucet product lines share similar raw material component breakdown, mass, and the same manufacturing process, with the main differences being the internal configurations and slight shape changes to the exterior design. An average product was calculated as the representative product for the sensor faucets in this study.

2.4 Flow Diagram

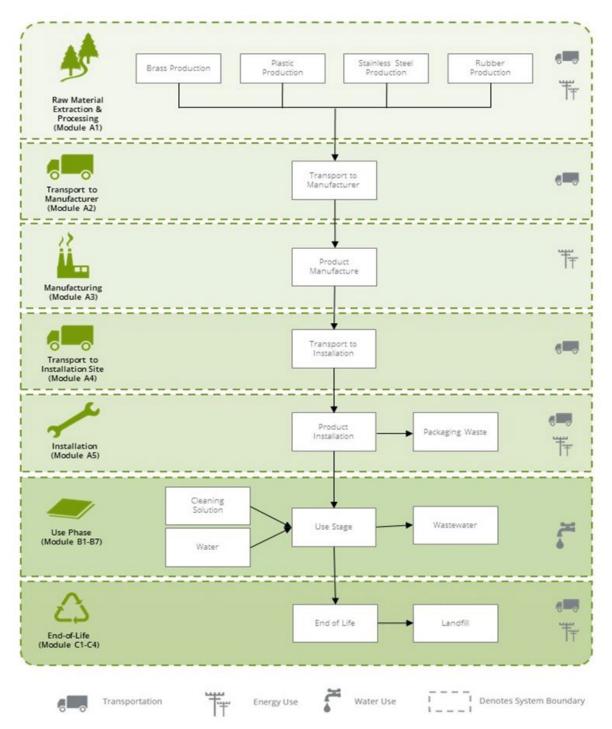


Figure 1. Flow diagram for the Sloan Basys® EFX Sensor Faucets.

2.5 Material Composition

Material	Mass (kg)	Percentage of Total Mass	Pre-Consumer Recycled Content	Post-Consumer Recycled Content
Zinc	0.604	45.2%	0%	0%
Brass	0.208	15.6%	20%	0%
Nylon	0.124	9.3%	0%	0%
Stainless Steel	0.100	7.5%	15%	0%
Battery	0.096	7.2%	0%	0%
Copper	0.063	4.7%	0%	0%
Sensor	0.050	3.7%	0%	0%
EPDM	0.027	2.0%	0%	0%
Silicone	0.019	1.5%	0%	0%
Plastic	0.018	1.3%	0%	0%
Turbine	0.011	0.8%	0%	0%
Cable	0.01	0.8%	0%	0%
Rubber	0.006	0.4%	0%	0%
Magnet	0.0002	0.02%	0%	0%
Total	1.34	100%	-	-

Table 2. Sloan Basys® EFX Sensor Faucet Material Components.

2.5 Technical Requirements

Table 3. Sloan Basys[®] EFX Sensor Faucet Technical Requirements.

Property	Unit	Value
Flow rate	Gallons per minute Liters per minute	0.5, 1.5 1.9, 5.7

3. LCA: METHODOLOGICAL FRAMEWORK

3.1 Functional Unit

The functional unit used in the study is one (1) packaged, installed unit with a reference service life (RSL) of 10 years. The building estimated service life (ESL) is assumed to be 75-years in order to be consistent with ASHRAE 189.1 (2014, Section 9.5.1).

Table 4. Sloan Basys[®] EFX Sensor Faucet Functional Unit Properties.

Property	Unit	Value
Functional Unit	One (1) packaged,	installed product
RSL	Years	10
ESL	Years	75
Mass	kg	1.34

3.2 System Boundary

The scope of the EPD is cradle-to-grave, including raw material extraction and processing; raw material transportation; product manufacture, including packaging; product distribution; installation; use; and end-of-life.

	Product		Constr Pro	uction cess				Use					End-o	of-life		Benefits and loads beyond the system boundary
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Raw material extraction and processing	Transport to manufacturer	Manufacturing	Transport	Construction - installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, recovery and/or recycling potential
х	x	х	х	х	х	х	х	х	х	х	х	х	х	х	x	MND

 Table 5. Sloan Basys[®] EFX Sensor Faucet System Boundaries.

X = Included in system boundary

MND = Module not declared

3.3 Allocation

Manufacturing resource use was allocated to the products based on mass. Impacts from transportation were allocated based on the mass of material and distance transported.

3.3 Cut-off criteria

According to the PCR, processes contributing greater than 1% of the total environmental impact indicator for each impact are included in the inventory. No data gaps were allowed which were expected to significantly affect the outcome of the indicator results.

3.4 Data Sources

Primary data were provided for the facility in Rebstein, Switzerland. The principal source of secondary LCI data is the Ecoinvent 3.9.1 database.

Component	Dataset	Geography	Data Source	Date
Product				
ABS	market for acrylonitrile-butadiene-styrene copolymer acrylonitrile-butadiene- styrene copolymer Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for injection moulding injection moulding Cutoff, U	Global	Ecoinvent 3.9.1	2022
Acetal	market for polypropylene, granulate polypropylene, granulate Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for injection moulding injection moulding Cutoff, U	Global	Ecoinvent 3.9.1	2022
Battery	market for battery cell, Li-ion, LiMn2O4 battery cell, Li-ion, LiMn2O4 Cutoff, U	Global	Ecoinvent 3.9.1	2022
Cable	market for cable, unspecified cable, unspecified Cutoff, U	Global	Ecoinvent 3.9.1	2022
Brass	market for brass brass Cutoff, U	RoW [†]	Ecoinvent 3.9.1	2022
	market for casting, brass casting, brass Cutoff, U	Global	Ecoinvent 3.9.1	2022

Table 6. LCI datasets and associated databases used to model the Sloan Sensor Faucet products.

Component	Dataset	Geography	Data Source	Date
Copper	market for copper, cathode copper, cathode Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for metal working, average for copper product manufacturing metal working, average for copper product manufacturing Cutoff, U	Global	Ecoinvent 3.9.1	2022
EPDM	market for synthetic rubber synthetic rubber Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for injection moulding injection moulding Cutoff, U	Global	Ecoinvent 3.9.1	2022
Magnet	market for permanent magnet, for electric motor permanent magnet, for	Global	Ecoinvent 3.9.1	2022
	electric motor Cutoff, U			
NBR	market for synthetic rubber synthetic rubber Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for injection moulding injection moulding Cutoff, U	Global	Ecoinvent 3.9.1	2022
Nylon	market for nylon 6-6 nylon 6-6 Cutoff, U	RoW	Ecoinvent 3.9.1	2022
, ,	market for extrusion of plastic sheets and thermoforming, inline extrusion of plastic sheets and thermoforming, inline Cutoff, U	Global	Ecoinvent 3.9.1	2022
Polypropylene	market for polypropylene, granulate polypropylene, granulate Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for injection moulding injection moulding Cutoff, U	Global	Ecoinvent 3.9.1	2022
Rubber	market for synthetic rubber synthetic rubber Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for injection moulding injection moulding Cutoff, U	Global	Ecoinvent 3.9.1	2022
SAN	market for styrene-acrylonitrile copolymer styrene-acrylonitrile copolymer Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for injection moulding injection moulding Cutoff, U	Global	Ecoinvent 3.9.1	2022
Sensor	market for electronic component, active, unspecified electronic component, ac unspecified Cutoff, U	Global	Ecoinvent 3.9.1	2022
Silicone	market for silicone product silicone product Cutoff, U	RoW	Ecoinvent 3.9.1	2022
Stainless Steel	market for steel, chromium steel 18/8, hot rolled steel, chromium steel 18/8, ho rolled Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for metal working, average for chromium steel product manufacturing metal working, average for chromium steel product manufacturing Cutoff, U	Global	Ecoinvent 3.9.1	2022
Zinc	market for zinc zinc Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for metal working, average for metal product manufacturing metal	Global	Ecoinvent 3.9.1	2022
	working, average for metal product manufacturing Cutoff, U			
Package				
Aluminium	market for aluminium, primary, ingot aluminium, primary, ingot Cutoff, U	RoW	Ecoinvent 3.9.1	2022
	market for section bar extrusion, aluminium section bar extrusion, aluminium Cutoff, U	Global	Ecoinvent 3.9.1	2022
Cardboard	market for containerboard, unspecified containerboard, unspecified Cutoff, U	United States	Ecoinvent 3.9.1	2022
Carrier Foil	market for printed paper, offset printed paper, offset Cutoff, U	Global	Ecoinvent 3.9.1	2022
Paper	market for kraft paper kraft paper Cutoff, U	RoW	Ecoinvent 3.9.1	2022
PE Plastic	market for packaging film, low density polyethylene packaging film, low density polyethylene Cutoff, U	Global	Ecoinvent 3.9.1	2022
Vinyl	market for polyvinylchloride, bulk polymerised polyvinylchloride, bulk polymerised Cutoff, U	Global	Ecoinvent 3.9.1	2022
	market for extrusion, plastic film extrusion, plastic film Cutoff, U	Global	Ecoinvent 3.9.1	2022
Transport				
Ship	market for transport, freight, sea, container ship transport, freight, sea, container ship Cutoff, U	Global	Ecoinvent 3.9.1	2022
Train	market for transport, freight train transport, freight train Cutoff, U	RoW	Ecoinvent 3.9.1	2022
Truck	market for transport, freight, lorry 16-32 metric ton, EURO4 transport, freight, lorry 16-32 metric ton, EURO4 Cutoff, U	RoW	Ecoinvent 3.9.1	2022
Manufacture				
Electricity	market for electricity, medium voltage electricity, medium voltage Cutoff, U	Switzerland	Ecoinvent 3.9.1	2022
Natural Gas	heat and power co-generation, natural gas, 500kW electrical, lean burn heat, district or industrial, natural gas Cutoff, U	Switzerland	Ecoinvent 3.9.1	2022
Water	market for tap water tap water Cutoff, U	Switzerland	Ecoinvent 3.9.1	2022
Waste				
Hazardous Waste	market for hazardous waste, for incineration hazardous waste, for incineration Cutoff, U	Switzerland	Ecoinvent 3.9.1	2022
1 101	market for inert waste, for final disposal inert waste, for final disposal	Switzerland	Ecoinvent 3.9.1	2022
Landfill	Cutoff, U			
Wastewater	Cutoff, U market for wastewater, average wastewater, average Cutoff, U	Switzerland	Ecoinvent 3.9.1	2022

3.5 Data Quality

 Table 7. Data Quality Assessment.

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The manufacturer provided primary data on product manufacturing for the facility annual production for 2022. Representative datasets (secondary data) for upstream and background processes are generally less than 5 years old.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Electricity use for product manufacture is modeled using representative data modelled for the specific electricity grids represented in this study. Surrogate data used in the assessment are representative of global or European operations and are considered sufficiently similar to actual processes.
Technology Coverage: Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations. Representative component datasets, specific to the type of material, are used to represent the actual processes, as appropriate.
Precision: Measure of the variability of the data values for each data expressed	Precision of results are not quantified due to a lack of data. Data collected for operations were typically averaged for one more years and over multiple operations, which is expected to reduce the variability of results.
Completeness: Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of the products. In some instances, surrogate data used to represent upstream and downstream operations may be missing some data which is propagated in the model. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	Data used in the assessment represent typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used; with a bias towards Ecoinvent v3.9.1 data where available. Different portions of the product life cycle are equally considered.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of the data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.
Sources of the Data: Description of all primary and secondary data sources	Data representing energy use at the manufacturing facilities represent a 12-month average and are considered of high quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. For secondary LCI data, Ecoinvent v3.9.1 data are used.
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the products and packaging is low. Actual supplier data for upstream operations was not available for all suppliers and the study relied upon the use of existing representative datasets. These datasets contained relatively recent data (<10 years) but lacked geographical representativeness. Uncertainty related to the impact assessment methods used in the study are high. The impact assessment methodology includes impact potentials, which lack characterization of providing and receiving environments or tipping points.

3.6 Period under review

The period of review is based on a 12-month period from January 2022 through December 2022.

3.7 Comparability

The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

3.8 Estimates and Assumptions

- Specific data were not available on acetal polymers in the product recipe. Secondary datasets for polypropylene were used from the Ecoinvent database to represent these polymers in the LCA model.
- Specific data were not available on EPDM and NBR in the product recipe. Secondary datasets for synthetic rubber were used from the Ecoinvent database to represent these materials in the LCA model.
- Product transport from point of purchase to the building site is assumed to be 500 km by truck as required by the Part B PCR.
- Product transport from the Sloan distribution centers in Los Angeles, CA and New York, NY to points of purchase was assumed to be 4500 km by truck, representing the assumed longest distance across the United States.
- Product transport from the manufacturing site to a sea port for ocean transport is assumed to be 430 km by truck.
- Ocean transport of the product is assumed to be 7506 km for products manufactured in the facility.
- Installation of the products is assumed to be manual, requiring no additional materials or energy use.
- Transport of the packaging waste at installation is assumed to be 100 km by truck as required by the Part B PCR.
- Transport of the product at end-of-life to waste processing and disposal is assumed to be 100 km by truck as required by the Part B PCR.
- The Reference Service Life (RSL) of the products was modeled as 10 years, as required by the Part B PCR.
- The Estimated Service Life (ESL) of the building/construction works was assumed to be 75 years, as required by the Part B PCR, in order to be consistent with ASHRAE 189.1 (2014, Section 9.5.1).
- The maintenance of the products is assumed to include daily cleaning with a cleaning solution of 10 ml of 1% sodium lauryl sulfate solution as specified in the Part B PCR.
- The repair of the products is assumed to include the replacement of battery component parts, including an assumed 50 km by truck transport, 2 times over the RSL, according to manufacturer experts.
- The products are assumed to require no replacement during the 10-year RSL, but in accordance with the Part A PCR and Part B PCR, requires replacement 6.5 times over the 75-year ESL.
- The use phase module B5 (Refurbishment) is assumed to have no impacts, as there is no resource or energy use associated with this module.
- The use phase modules are modeled for the building/construction works ESL of 75 years.
- For the product end-of-life, disposal of product is assumed to follow the disposal scenario indicated in the Part A PCR.

4. LCA: TECHNICAL INFORMATION AND SCENARIOS

4.1 Manufacture

This module includes the manufacturing, assembly and packaging of the Basys[®] EFX sensor faucets at the manufacturing facility in Rebstein, Switzerland.

4.2 Packaging

Table 8. Sloan Basys [®] EFX Sensor Faucet packaging material comp	onents.
---	---------

Packaging material	Mass (kg)	Percentage of Total Mass	Pre-Consumer Recycled Content	Post-Consumer Recycled Content
Cardboard	0.377	91%	0%	100%
Paper	0.032	7.8%	0%	100%
Paper Foil	0.0003	0.01%	0%	0%
Polyethylene	0.004	0.9%	0%	50%
Vinyl	0.0005	0.1%	0%	0%
Total	0.414	100%	-	-

4.3 Transportation

 Table 9. Sloan Basys[®] EFX Sensor Faucet Transportation Summary.

Name	Unit	Value
Vehicle Type	-	Freight Truck
Liters of fuel	l/100 km	18.7
Fuel Type	-	Diesel
Transport Distance	km	5430
Factory to Port (assumed)	km	430
Port to Distribution (assumed)	km	4500
Point of purchase to installation (per PCR)	km	500
Capacity utilization	%	50
Vehicle Type	-	Ocean Freighter
Liters of fuel	l/100 km	0.41
Fuel Type	-	Heavy Fuel Oil
Transport Distance	km	7506
Port to Port (assumed)	km	7506
Capacity utilization	%	n/a
Gross mass of products transported ¹	kg	1.75

¹ including packaging

4.4 Installation

The installation of the sensor faucet products is completed using manual labor and does not require additional ancillary materials. Waste is generated from the disposal of the packaging materials and is modeled as required in the Part A PCR.

 Table 10. Sloan Basys[®] EFX Sensor Faucet installation summary.

Name	Unit	Value
Ancillary materials	kg	0
Net freshwater consumption specified by water source and fate	m ³	0
Other resources	kg	0
Electricity consumption	kwh	0
Other energy carriers	MJ	0
Product loss per functional unit	kg	0
Waste materials at the construction site before waste processing, generated by product installation	kg	0
Output materials resulting from on-site waste processing	kg	0
Mass of packaging waste specified by type	kg	0.412
Recycle	kg	0.303
Landfill	kg	0.087
Incineration	kg	0.022
Biogenic carbon contained in packaging	kg CO ₂	0.732
Direct emissions to ambient air, soil, and water	kg	0
VOC emissions	µg/m³	0

4.5 Use

 Table 11. Sloan Basys[®] EFX Sensor Faucet maintenance summary.

Maintenance	Unit	Value
Description of process	-	Daily cleaning with 10 ml 1% sodium lauryl sulfate solution
Maintenance cycle	Cycles/RSL	3650
Maintenance cycle	Cycles/ESL	27,375
Net freshwater consumption		
City water disposed to sewer	m ³	0.036
Ancillary materials		
Sodium lauryl sulfate solution	kg	0.365
Other resources	kg	0
Energy input	kWh	0
Other energy carriers	kWh	0
Power output of equipment	kW	0
Waste materials from maintenance	kg	0
Direst emissions to ambient air, soil, and water	kg	0
Further assumptions for scenario development	-	-

Table 12. Sloan Basys[®] EFX Sensor Faucet repair summary.

Repair	Unit	Value
Repair process information	-	Per manufacturer, batteries may require 2 replacements per RSL to repair product
Inspection process information	-	N/A
Repair cycle	Cycles/RSL	2
Repair cycle	Cycles/ESL	15
Net freshwater consumption	m ³	0
Ancillary materials	kg	0.192
Batter	v kg	0.192
Energy input	kWh	0
Waste materials from repair	kg	0.192
Landfi	// kg	0.192
Direct emissions to ambient air, soil, and water	kg	0
Further assumption for scenario development	-	-

Table 13. Sloan Basys[®] EFX Sensor Faucet Replacement Summary.

Replacement	Unit	Value
Reference Service Life	Years	10
Replacement cycle (ESL/RSL)-1	-	6.5
Energy input	kWh	0
Net freshwater consumption	m ³	0
Ancillary materials	kg	0
Replacement of materials	kg	1.34
Direct emissions to ambient air, soil, and water	kg	0
Further assumptions for scenario development	-	-

Table 14. Sloan Basys[®] EFX Sensor Faucet refurbishment summary.

Refurbishment	Unit	Value
Refurbishment process	-	N/A
Refurbishment cycle	Cycles/RSL	0
Refurbishment cycle	Cycles/ESL	0
Energy input	kWh	0
Net freshwater consumption	m ³	0
Material input	kg	0
Waste materials	kg	0
Direct emissions to ambient air, soil, and water	kg	0
Further assumption for scenario development	-	-

Table 15. Sloan Basys[®] EFX Sensor Faucet Operational Energy and Water Use Summary.

	11-14	Lavatory Faucet Products			
Operational Energy and Water Use	Unit	0.5 gpm (1.9 Lpm)	1.5 gpm (5.7 Lpm)		
Net freshwater consumption					
City water to sewer	m ³ /RSL	111	332		
Ancillary materials	kg	0	0		
Energy input	kWh	4,438	13,314		
Equipment power output	kW	0	0		
Characteristic performance	-	-	-		
Direct emissions to ambient air, soil, water	kg	0	0		
Further assumptions for scenario development (per PCR)	water use is assumed 70% hot water, 30% cold water heating for hot water is assumed 50% electricity (0.1765 kwh per gallon), 50% natural gas (0.8784 mcf per 1000 gallons)				
Number of users per product	30				
Number of uses per user per day	3				
Number of use days per year	260				

4.6 End-of-Life

Table 16. Sloan Basys[®] EFX Sensor Faucet End-of-Life Summary.

End-of-life		Unit	Value
Assumptions for scenario development			Manual deconstruction, followed by 100 km truck transport to final disposal in landfill
Collected separately		kg	0
process	Collected with mixed construction waste	kg	1.34
	Reuse	kg	0
	Recycling	kg	0
Decever	Landfill	kg	1.34
Recovery	Incineration	kg	0
	Incineration with energy recovery	kg	0
	Energy conversion	-	-
Disposal	Product of material for final deposition	kg	1.34
Removals of bio	ogenic carbon (excluding packaging)	kg CO ₂	0

5. LCA: Results

Results of the Life Cycle Assessment are presented below. It is noted that LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. All LCA results are stated to three significant figures in agreement with the PCR for this product and therefore the sum of the total values may not exactly equal 100%. Modules with zero (0) impacts: B1, B5, C1, and C3 are omitted from the results tables. Module B6 and B7, Operational Energy Use and Operational Water Use, are reported separately for the various flow rate applications available.

The following environmental impact category indicators are reported using characterization factors using the CML-IA impact assessment method and the TRACI 2.1 impact assessment method. Note that for global warming calculations, the CML characterization factors are based on IPCC 2013, while TRACI 2.1 global warming calculations are based on IPCC 2007. Note also that neither characterization method includes biogenic carbon uptake or biomass CO2 emissions. Based on the component materials of the product and production processes, there are no impacts associated with land-use changes, nor are environmental impacts associated with carbonation relevant for the product system.

Table 17. Mandatory Environmental Impact Assessment Categories.

CMLI-A Impact Category	Unit	TRACI 2.1 Impact Category	Unit
GWP: Global Warming Potential	kg CO2 eq.	GWP: Global Warming Potential	kg CO2 eq.
ODP: Depletion potential of the stratospheric ozone layer	kg CFC 11 eq.	ODP: Depletion potential of the stratospheric ozone layer	kg CFC 11 eq.
AP: Acidification Potential of soil and water	kg SO ₂ eq.	AP: Acidification Potential of soil and water	kg SO2 eq.
EP: Eutrophication Potential	kg PO4 ³⁻ eq.	EP: Eutrophication Potential	kg N eq.
POCP: Photochemical Oxidant Creation Potential	kg C ₂ H ₄ eq.	SFP: Smog Formation Potential	kg O₃eq.
ADPE: Abiotic Depletion Potential, elements	kg Sb eq	FFD: Fossil Fuel Depletion	MJ Surplus
ADPF: biotic Depletion Potential, fossil fuels	MJ		

These impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes. The following inventory parameters, specified by the PCR, are also reported.

Table 18. Addition	al Transparency	Categories.
--------------------	-----------------	-------------

Resources	Unit	Waste and Outflows	Unit
RPR _E : Renewable primary resources used as energy carrier (fuel)	MJ, LHV	HWD: Hazardous waste disposed	kg
RPR_M: Renewable primary resources with energy content used as material	MJ, LHV	NHWD: Non-hazardous waste disposed	kg
NRPR _E : Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	RWD: Radioactive waste, conditioned, to final repository	kg
NRPR_M: Non-renewable primary resources with energy content used as material	MJ, LHV	CRU: Components for re-use	kg
SM: Secondary materials	kg	MR: Materials for recycling	kg
RSF: Renewable secondary fuels	MJ, LHV	MER: Materials for energy recovery	kg
NRSF: Non-renewable secondary fuels	MJ, LHV	EE: Recovered energy exported from the product system	kg
RE: Recovered energy	MJ, LHV	EE: Recovered energy exported from the product system	MJ, LHV
FW: Use of new freshwater resources	m ³		

Sloan Basys[®] EFX – Average Sensor Faucet Results

 Table 19. Impact indicator results for Sloan Basys[®] EFX Sensor Faucets.

CML Impact	GWP	ODP	AP		P	POCP		ADPE	ADPF
Method	kg CO2 eq	kg CFC-11 eq	kg SO ₂ eo	q kg P(D₄³- eq	kg C ₂ H ₄ e	eq	kg Sb eq	MJ
A1	84.4	6.10x10 ⁻⁶	0.498	0.1	396	0.020		0.029	919
A2	0.205	2.61x10 ⁻⁹	0.003	3.86	x10 ⁻⁴	8.75x10	-5	4.06x10 ⁻⁷	2.66
A3	0.528	2.07x10 ⁻⁸	0.001	0.0	001	1.81x10	-4	1.83x10 ⁻⁶	6.16
A1-A3 Total:	85.1	6.12x10 ⁻⁶	0.502	0.1	398	0.020		0.029	928
A4	1.94	2.55x10 ⁻⁸	0.009	0.0	002	3.70x10	-4	5.96x10 ⁻⁶	26.9
A5	0.020	1.46x10 ⁻¹⁰	3.42x10-5	1.40	x10 ⁻⁵	1.60x10	-6	2.85x10⁻ ⁸	0.133
B2	6.67	1.02x10 ⁻⁷	0.024	0.0	800	0.002		4.30x10 ⁻⁵	150
B3	0.014	2.74x10 ⁻¹⁰	6.82x10	1.65	x10 ⁻⁵	3.58x10	-6	2.72x10 ⁻⁸	0.284
B4	566	3.99x10 ⁻⁵	3.32	2	60	0.131		0.187	6210
C2	0.025	3.36x10 ⁻¹⁰	8.22x10-	2.11	x10 ⁻⁵	3.99x10	-6	8.20x10 ⁻⁸	0.356
C4	0.013	2.54x10 ⁻¹⁰	6.32x10-	1.53	x10 ⁻⁵	⁵ 3.32x10 ⁻⁶		2.52x10 ⁻⁸	0.263
TRACI Impact	GWP	ODP		AP		EP			
	GVVF	UDP		AP		EP	S	FP	FFD
Method	kg CO ₂ eq	kg CFC-11 e	eq ka	AP s SO ₂ eq	kg	EP N eq		FP D₃ eq	FFD MJ Surplus
							kg C		
Method	kg CO₂ eq	kg CFC-11 e		sO₂ eq	0	N eq	kg C 6.)₃ eq	MJ Surplus
Method A1	kg CO₂ eq 83.8	kg CFC-11 e 6.55x10 ⁻⁶		; SO₂ eq 0.512	0 2.3	N eq .867	kg C 6. 0.0	0₃ eq 37	MJ Surplus 72.7
Method A1 A2	kg CO₂ eq 83.8 0.204	kg CFC-11 e 6.55x10 ⁻⁶ 3.44x10 ⁻⁹		sO₂ eq 0.512 0.003	0 2.3 0	N eq .867 7x10 ⁻⁴	kg C 6. 0.0	37 063	MJ Surplus 72.7 0.384
Method A1 A2 A3	kg CO₂ eq 83.8 0.204 0.517	kg CFC-11 e 6.55x10 ⁻⁶ 3.44x10 ⁻⁹ 3.62x10 ⁻⁸		502 eq 0.512 0.003 0.002	0 2.3 0 0	N eq .867 7x10 ⁻⁴ .002	kg C 6. 0.0 0.0 6.)₃ eq 37)63)33	MJ Surplus 72.7 0.384 0.800
Method A1 A2 A3 A1-A3 Total:	kg CO₂ eq 83.8 0.204 0.517 84.5	kg CFC-11 6 6.55x10 ⁻⁶ 3.44x10 ⁻⁹ 3.62x10 ⁻⁸ 6.59x10 ⁻⁶		5O₂ eq 0.512 0.003 0.002 0.518	0 2.3 0 0 0	N eq .867 7x10 ⁻⁴ .002 .869	kg C 6. 0.0 0.0 0.2	D₃ eq 37 063 033 47	MJ Surplus 72.7 0.384 0.800 73.9
Method A1 A2 A3 A1-A3 Total: A4	kg CO₂ eq 83.8 0.204 0.517 84.5 1.92	kg CFC-11 e 6.55x10 ⁻⁶ 3.44x10 ⁻⁹ 3.62x10 ⁻⁸ 6.59x10 ⁻⁶ 3.37x10 ⁻⁸) 4.	sO₂ eq 0.512 0.003 0.002 0.518 0.010	0 2.3 0 0 0 0 2.2	N eq .867 7x10 ⁻⁴ .002 .869 .002	kg C 6. 0.0 0.0 6. 0.2 0.2	D₃ eq 37 063 033 47 242	MJ Surplus 72.7 0.384 0.800 73.9 3.84
Method A1 A2 A3 A1-A3 Total: A4 A5	kg CO₂ eq 83.8 0.204 0.517 84.5 1.92 0.020	kg CFC-11 e 6.55x10 ⁻⁶ 3.44x10 ⁻⁹ 3.62x10 ⁻⁸ 6.59x10 ⁻⁶ 3.37x10 ⁻⁸ 1.86x10 ⁻¹⁰	9 4.	50₂ eq 0.512 0.003 0.002 0.518 0.010 15x10 ⁻⁵	0 2.3 0 0 0 0 2.2 0	N eq .867 7x10 ⁻⁴ .002 .869 .002 8x10 ⁻⁵	kg C 6. 0.0 6. 0.2 0.2 0.2 0.3	D₃ eq 37 063 033 47 242 001	MJ Surplus 72.7 0.384 0.800 73.9 3.84 0.019
Method A1 A2 A3 A1-A3 Total: A4 A5 B2	kg CO₂ eq 83.8 0.204 0.517 84.5 1.92 0.020 6.65	kg CFC-11 e 6.55x10 ⁻⁶ 3.44x10 ⁻⁹ 3.62x10 ⁻⁸ 6.59x10 ⁻⁶ 3.37x10 ⁻⁸ 1.86x10 ⁻¹⁰ 1.22x10 ⁻⁷	⁰ 4.	5O2 eq 0.512 0.003 0.002 0.518 0.010 15x10 ⁻⁵ 0.026	0 2.3 0 0 0 0 2.2 0 1.6	N eq .867 7x10 ⁻⁴ .002 .869 .002 8x10 ⁻⁵ .034	kg C 6. 0.0 0.0 6. 0.2 0.0 0.2 0.0 0.2 0.0	D3 eq 37 363 333 47 242 201 352	MJ Surplus 72.7 0.384 0.800 73.9 3.84 0.019 19.8
Method A1 A2 A3 A1-A3 Total: A4 A5 B2 B3	kg CO₂ eq 83.8 0.204 0.517 84.5 1.92 0.020 6.65 0.013	kg CFC-11 e 6.55x10.6 3.44x10.9 3.62x10.8 6.59x10.6 3.37x10.8 1.86x10.10 1.22x10.7 3.64x10.10) 4.) 8.	502 eq 0.512 0.003 0.002 0.518 0.010 15x10 ⁻⁵ 0.026 27x10 ⁻⁵	0 2.3 0 0 0 0 2.2 0 1.6	N eq .867 7x10 ⁻⁴ .002 .869 .002 8x10 ⁻⁵ .034 0x10 ⁻⁵	kg C 6. 0.0 6. 0.2 0.2 0.2 0.2 0.2 0.4 3	D3 eq 37 063 033 47 2242 001 352 002	MJ Surplus 72.7 0.384 0.800 73.9 3.84 0.019 19.8 0.041

 Table 20. Additional Resource Use and Waste indicators for the Sloan Basys[®] EFX Sensor Faucets.

Resource	RPRE	RPRM	NRPRE	NRPR _M	SM	RSF	NRSF	RE	FW
Use	MJ	MJ	MJ	MJ	kg	MJ	MJ	MJ	m ³
A1	127	0.00	1090	0.00	0.00	0.00	0.00	0.00	0.751
A2	0.032	0.00	2.69	0.00	0.00	0.00	0.00	0.00	2.74x10-4
A3	10.6	0.00	9.61	0.00	0.412	0.00	0.00	0.00	0.016
A1-A3 Total:	138	0.00	1100	0.00	0.412	0.00	0.00	0.00	0.767
A4	0.338	0.00	27.3	0.00	0.00	0.00	0.00	0.00	0.003
A5	0.002	0.00	0.135	0.00	0.00	0.00	0.00	0.00	5.18x10 ⁻⁵
B2	5.05	0.00	158	0.00	0.00	0.00	0.00	0.00	0.338
B3	0.003	0.00	0.288	0.00	0.00	0.00	0.00	0.00	2.44x10 ⁻⁴
B4	896	0.00	7320	0.00	2.68	0.00	0.00	0.00	5.01
C2	0.005	0.00	0.361	0.00	0.00	0.00	0.00	0.00	4.55x10 ⁻⁵
C4	0.003	0.00	0.267	0.00	0.00	0.00	0.00	0.00	2.27x10 ⁻⁴
Waste &	HWD	NHV	VD H	LRW/ILLRW	CRU	MR		MER	EE
Output	kg	k	S	kg	kg	kg		kg	MJ, LHV
A1	0.00	0.0	0	0.00	0.00	0.00		0.00	0.00
A2	0.00	0.0	0	0.00	0.00	0.00		0.00	0.00
A3	4.01x10 ⁻⁶	0.28	30	0.00	0.00	0.107		0.00	0.00
A1-A3 Total:	4.01x10⁻6	0.28	30	0.00	0.00	0.107		0.00	0.00
A4	0.00	0.0	0	0.00	0.00	0.00		0.00	0.00
A5	0.00	0.10	06	0.00	0.00	0.308		0.00	0.00
B2	0.00	0.0	0	0.00	0.00	0.00		0.00	0.00
B3	0.00	0.0	0	0.00	0.00	0.00		0.00	0.00
B4	0.00	8.6	8	0.00	0.00	0.00		0.00	0.00
C2	0.00	0.0	0	0.00	0.00	0.00		0.00	0.00
			4	0.00	0.00	0.00		0.00	0.00

Sloan Basys[®] EFX Sensor Faucet Results for Operational Energy and Water Use Modules (B6 and B7)

 Table 21. Impact indicator results for Sloan Basys® EFX Sensor Faucets Module B6 per ESL.

CML Impact Method		Operational Energy Use			
		0.5 gpm	1.5 gpm		
GWP	kg CO2 eq	9,210	27,600		
ODP	kg CFC-11 eq	6.56x10 ⁻⁵	1.97×10 ⁻⁴		
AP	kg SO2 eq	18.9	56.8		
EP	kg PO₄³- eq	14.9	44.8		
POCP	kg C ₂ H ₄ eq	1.04	3.12		
ADPE	kg Sb eq	0.056	0.167		
ADPF	MJ	120,000	361,000		
TRACI Impact Method		Operational Energy Use			
		0.5 gpm	1.5 gpm		
GWP	kg CO2 eq	9,140	27,400		
ODP	kg CFC-11 eq	1.18x10 ⁻⁴	3.54x10 ⁻⁴		
AP	kg SO2 eq	19.2	57.6		
EP	kg N eq	32.7	98.1		
SFP	kg O₃ eq	227	681		
FFD MJ Surplus		14,900	44,700		

 Table 22. Additional Resource Use and Waste indicators for the Sloan Basys[®] EFX Sensor Faucets Module B6 per ESL.

	Operational Energy Use			
	0.5 gpm	1.5 gpm		
MJ, LHV	14,300	42,800		
MJ, LHV	0.00	0.00		
MJ, LHV	159,000	478,000		
MJ, LHV	0.00	0.00		
kg	0.00	0.00		
MJ, LHV	0.00	0.00		
MJ, LHV	0.00	0.00		
MJ, LHV	0.00	0.00		
m ³	48.1	144		
	Operational Energy Use			
	0.5 gpm	1.5 gpm		
kg	0.00	0.00		
Kg	0.00	0.00		
kg	0.00	0.00		
kg	0.00	0.00		
kg	0.00	0.00		
kg	0.00	0.00		
MJ, LHV	0.00	0.00		
	VJ, LHV VJ, LHV VJ, LHV Kg VJ, LHV VJ, LHV VJ, LHV MJ, LHV MJ, LHV Kg Kg Kg kg kg kg kg	O.5 gpm VJ, LHV 14,300 VJ, LHV 0.00 VJ, LHV 0.00 VJ, LHV 159,000 VJ, LHV 0.00 MJ, LHV 0.00 MG 0.00 Kg 0.00 Kg 0.00 kg 0.00 kg 0.00 kg 0.00		

CML Impact Method		Operational Water Use			
		0.5 gpm	1.5 gpm		
GWP	kg CO₂ eq	1,020	3,070		
ODP	kg CFC-11 eq	2.43x10 ⁻⁴	7.30×10 ⁻⁴		
AP	kg SO2 eq	4.42	13.3		
EP	kg PO₄³- eq	1.61	4.82		
POCP	kg C ₂ H ₄ eq	0.232	0.696		
ADPE	kg Sb eq	0.005	0.014		
ADPF	MJ	10,900	32,600		
TRACI Impact	Method	Operational Water Use			
		0.5 gpm	1.5 gpm		
GWP	kg CO2 eq	1,010	3,040		
ODP	kg CFC-11 eq	2.49x10 ⁻⁴	7.46x10 ⁻⁴		
AP	kg SO2 eq	4.59	13.8		
EP	kg N eq	3.14	9.41		
SFP	kg O₃ eq	63.7	191		
FFD	MJ Surplus	797	2,390		

Table 23. Impact indicator results for Sloan Basys® EFX Sensor Faucets Module B7 per ESL.

Resource Use		Operational Water Use			
		0.5 gpm	1.5 gpm		
RPRE	MJ, LHV	1,180	3,530		
RPRM	MJ, LHV	0.00	0.00		
NRPRE	MJ, LHV	12,300	37,000		
NRPRM	MJ, LHV	0.00	0.00		
SM	kg	0.00	0.00		
RSF	MJ, LHV	0.00	0.00		
NRSF	MJ, LHV	0.00	0.00		
RE	MJ, LHV	0.00	0.00		
FW	m ³	791	2,370		
Waste & Output		Operational Water Use			
		0.5 gpm	1.5 gpm		
HWD	kg	0.00	0.00		
NHWD	Kg	0.00	0.00		
HLRW/ILLRW	kg	0.00	0.00		
CRU	kg	0.00	0.00		
MR	kg	0.00	0.00		
MER	kg	0.00	0.00		
EE	MJ, LHV	0.00	0.00		

6. LCA: INTERPRETATION

The interpretation phase conforms to ISO 14044. The interpretation included the use of evaluation and sensitivity checks to steer the iterative process during the assessment, and a final evaluation including completeness, sensitivity, and consistency checks, at the end of the study.

The contributions to total impact indicator results are dominated by the use phase impacts, specifically, the operational energy and water use modules (B6 and B7) with as much as 90% of the overall impacts and secondly by the use phase replacement module (B4). When examining the results without the operation use phase impacts and without the replacement module impacts, the results are dominated by the raw material module (A1) with the product maintenance module (B2) also showing significant impacts.

Figure 2. Contribution analysis for the Sloan Basys EFX Sensor Faucets (excluding Modules B4, B6, and B7).

7. ADDITIONAL ENVIRONMENTAL INFORMATION

Sloan is a proud member of the United States Green Building Council (USGBC) and through the use of Leadership in Energy and Environmental Design (LEED) Green Building Rating System, Sloan recognizes and validates the importance of best-on-class building strategies and practices of high performing green buildings. Sloan's Basys[®] EFX faucets within this EPD can be used to help achieve water efficiency goals as well as gaining USGBC LEED v4 points and complying with building codes.

No environmental or health impacts are expected due to extraordinary effects including fire and/or water damage and product destruction.

For more information on Sloan's certifications and environmental initiatives please visit the website at www.sloan.com.

8. REFERENCES

- 1. CML-IA Characterization Factors. Leiden University, Institute of Environmental Sciences. April 2013. https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors
- 2. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI). U.S. EPA.
- 3. Ecoinvent v3.9.1 2022. Swiss Center for Life Cycle Inventories, 2010. http://www.ecoinvent.org
- 4. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.
- ISO 14040: 2006/Amd 1:2020 Environmental Management Life cycle assessment Principles and Framework
- ISO 14044: 2006/Amd 1:2017/ Amd 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- 7. ISO 21930: 2017 Sustainability in building construction Environmental declaration of building products.
- 8. Life Cycle Assessment of Sensor Faucets. SCS Global Services Final Report. Prepared for Sloan Valve Company. July 2023.
- 9. SCS Type III Environmental Declaration Program: Program Operator Manual. V12.0 December 2023. SCS Global Services.
- 10. UL. PCR Guidance for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements. Version 3.2. December 2018.
- 11. UL PCR Guidance for Building-Related Products and Services Part B: Kitchen and Bath Fixture Fittings and Accessory Products EPD Requirements. Version 1.0. October 2020.

For more information please contact

Sloan Valve Company

10500 Seymour Avenue Franklin Park, IL 60131 customer.service@sloan.com | 800-982-5839 https://www.sloan.com

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.510.452.8000 | fax +1.510.452.8001

© 2022 SCSglobalServices.com